$\Upsilon J/\psi$ Production at LHC

A.V. Luchinsky

Institute for High Energy Physics, Protvino, Russia

May 19, 2015

In collaboration with A.K. Likhoded, S.V. Poslavsky

Contents

- Introduction
- Partonic cross sections
 - LO CS
 - NLO
- 3 Hadronic Cross Sections
 - DPS
 - Distributions
- 4 Conclusion

 $\Upsilon J/\psi$ Production at LHC

Introduction

Introduction

- $pp \rightarrow Q_1Q_2 + X \Rightarrow info on Q structure$
- Different production mechanisms: LO CS, NLO CS, LO CO, DPS, etc
 - $2J/\psi$:

$$\sigma_{CS} = 4 \, \text{nb}, \qquad \sigma_{DPS} = 2 \, \text{nb}$$

• $2\Upsilon(1S)$:

$$\sigma_{CS} = 8.7 \,\mathrm{pb}, \qquad \sigma_{DPS} = 0.4 \,\mathrm{pb}$$

• How about $\Upsilon J/\psi$?

$$\sigma_{CS}^{J/\psi \Upsilon} \ll \sigma_{CS}^{\Upsilon \Upsilon} \ll \sigma_{CS}^{J/\psi J/\psi}$$

LO CS is forbidden \Rightarrow clean mode to study other subrocesses

LO CS, discussion

- $\Upsilon J/\psi$ production at LO CS is forbidden by C-parity conservation
- Can be produced via radiative decays of $\chi_b \chi_c$

$$\hat{\sigma}(\Upsilon\psi) = \sum_{J_c J_b} \operatorname{Br}(\chi_{bJ_b} \to \Upsilon\gamma) \operatorname{Br}(\chi_{cJc} \to J/\psi\gamma) \hat{\sigma}(\chi_{bJ_b}\chi_{cJ_c})$$

- peaks at $p_T = 0$
- equivalent gluon \Rightarrow $\hat{\sigma}(\chi_{bJ_b}\chi_{cJ_c}) \sim$ $(2J_b+1)\Gamma(\chi_{bJ_b})(2J_c+1)\Gamma(\chi_{cJ_c})$
- The ratios are

$$\chi_{b2}\chi_{c2}:\chi_{b2}\chi_{c0}:\chi_{b0}\chi_{c2}:\chi_{b0}\chi_{c0}\approx$$

• production of $\chi_{c,b1}$ is suppressed

LO CS, results

• Partonic cross sections (in fb) at $\hat{s} = \hat{s}_0 = 2(M_{\chi_c} + M_{\chi_b})^2$

Q_1/Q_2	χc0	χc1	χc2
χь0	16.3	14.8	21.4
χь1	2.1	4.6	3.8
χь2	21.4	19.6	29.2

The ratios agree with naive expectations

Distributions of the partonic cross sections

NLO

Furry theorem can be skipped at

NLO

[V. Kiselev et al, Yad.Fiz.49, 1681 (1989)]

$$\hat{\sigma} \sim F^2(\hat{t}), F(\hat{t}) \sim \int d^2k \frac{J_A J_B}{\mathbf{k}^2 (\mathbf{k} - \mathbf{q})^2}$$

$$\hat{\sigma}_{NLO}(\hat{s}_0) = 21 \, \text{fb}$$

[P. Ko, JHEP 1101, 070 (2011), arXiv:1007.3095.] Colour octet components $c\bar{c}[^3S_1^{[8]}],\; b\bar{b}[^3S_1^{[8]}]$ were taken into account

$$\hat{\sigma}_{CO}(\hat{s}_0) = 50 \,\mathrm{fb}$$

 $\Upsilon J/\psi$ Production at LHC

Distributions

- In all kinematical region 2χ channel is suppressed
- From analysis of angular distributions one can separate CO and NLO channels

Hadronic Cross Sections

• From presented above partonic cross sections one can obtain hadronic ones. At LHCb ($\sqrt{s} = 8 \text{ TeV}$, $2 < y_{\Upsilon, I/\psi} < 4.5$)

Hadronic Cross Sections

$$\sigma_{SPS}\left(pp \to \chi_b \chi_c + X \to \Upsilon J/\psi + X\right) = 0.2 \ pb,$$

$$\sigma_{SPS}\left(pp \to \Upsilon J/\psi + X, NLO\right) = 1.5 \ pb,$$

$$\sigma_{SPS}\left(pp \to \Upsilon J/\psi, CO\right) = 11.1 \ pb.$$

At LHC energies Double Parton Scattering channel is significant

$$\sigma_{DPS} = \frac{\sigma_{SPS}\sigma_{SPS}}{\sigma_{eff}} = 12.5 \,\mathrm{pb}$$

 One can separate contributions of different channels from distributions' analysis

Distributions

- CO and DPS channels give main contributions in all kinematical region
- 2χ channel is suppressed

- Inclusive hadronic production of $J/\psi \Upsilon(1S)$ pair is considered
- \bullet CS $(\chi_b\chi_c)$, CO, NLO and DPS mechanisms were taken into account
- Main contributions come from DPS and SPS CO reactions
- Inclusive $\Upsilon J/\psi$ production can be used to study CO matrix elements and DPS distribution functions
- More details can be found at A.K Likhoded, A.V. Luchinsky, S.V. Poslavsky, arXiv:1503:00246 [hep-ph]

Thank you for your attention!